Расчет изотерм метана в интервале температур от 300 K до 1000 K на основе фрактального уравнения состояния

Р. А. Магомедов и Э. Н. Ахмедов

Институт проблем геотермии и возобновляемой энергетики – филиал Объединенного института высоких температур РАН, Махачкала, Республика Дагестан 367030, Россия

E-mail: aen-code@yandex.ru

Статья поступила в редакцию 16 ноября 2023 г.

Аннотация. На основе ранее предложенной методики рассчитано уравнение состояния метана в диапазоне температур от 300 К до 1000 К. Полученные расчетные результаты хорошо согласуются с экспериментальными значениями. Определена зависимость подгоночного параметра от плотности для различных температур. Показано, что при приближении к 1000 К температурная зависимость подгоночного параметра ослабевает. Предполагая, что при больших температурах изменение этой зависимости будет незначительным, возможно произвести прогностический расчет изотерм для больших температур. https://doi.org/10.33849/2023312

1. ВВЕДЕНИЕ

В настоящее время метан (CH₄) вызывает большой интерес исследователей в связи с техническим прогрессом и как одно из основных веществ (компонент) химической промышленности для синтеза других веществ. Метан используется во многих областях промышленности [1–6]: машиностроении, авиационной, космической, автомобильной, энергетической; в жилищнокоммунальном хозяйстве и быту.

Метан является одним из распространенных газов в атмосфере и на Земле. В природе содержится в природном газе (более 70%), добываемом из газовых и газоконденсатных месторождений; в попутном нефтяном газе (~ 30% и более, в зависимости от месторождения); в рудничном и болотном газах. Также растворен в нефти, в пластовых и поверхностных водах. В твердом состоянии встречается в виде газогидратов на дне океанов и морей, и в зоне вечной мерзлоты.

Однако его избыточное содержание в атмосфере вызывает серьезные проблемы для человека и природы. Экономическое развитие и индустриализация стран увеличивают промышленные выбросы, которые могут увеличить количество метана в атмосфере. Средняя концентрация СН₄ в атмосфере превысила доиндустриальный уровень в 2.5 раза. Метан пожароопасен (самовоспламенение при T = 537.8 °C) и взрывоопасен при концентрации в воздухе от 4.4 до 17% (наиболее взрывоопасная концентрация — 9.5%), а при более высокой концентрации приводит к удушью от недостатка кислорода.

Является третьим парниковым газом по значимости (после водяного пара и углекислого газа) по влиянию на глобальное потепление Земли. Метан (совместно с другими парниковыми газами СО, NO) способствует появлению озона О₃ в нижних слоях атмосферы в результате фотохимических реакций взаимодействия [7].

В настоящее время активно ведутся работы в области мониторинга выбросов парниковых газов (CO₂ /CH₄ /N₂O/SF₆) и озонразрушающих веществ, оценки баланса метана в природных и антропогенных экосистемах. Строятся карбоновые полигоны [8], создаются новые технологии низкоуглеродной индустрии.

Ввиду вышеизложенного, актуальным остается вопрос изучения теплофизических свойств метана, в том числе построения математических моделей, способных произвести точный расчет уравнения состояния.

2. МЕТОД РАСЧЕТА

Используя математический аппарат интегродифференцирования дробного порядка [9, 10] можно обобщить классическую термодинамику и статистическую физику [11], в том числе и соотношения Максвелла [12]. Для вывода уравнения состояния и последующего расчета теплофизических свойств веществ используется потенциал Гельмгольца, традиционное выражение для которого имеет вид

$$\mathrm{d}F = -P\mathrm{d}V - S\mathrm{d}T.\tag{1}$$

С применением аппарата производных дробного порядка, выражение (1) преобразуется следующим образом

$$\mathrm{d}^{\alpha}F = -\frac{PV^{1-\alpha}}{\Gamma(2-\alpha)}\mathrm{d}V^{\alpha} - \frac{T^{1-\alpha}S}{\Gamma(2-\alpha)}\mathrm{d}T^{\alpha}.$$
 (2)

Соотношение Максвелла, обобщенное на случай дробного исчисления, таким образом, принимает вид

$$\left. \frac{\partial^{\alpha} F}{\partial V^{\alpha}} \right|_{T} = -\frac{PV^{1-\alpha}}{\Gamma(2-\alpha)}.$$
(3)

Исходя из производных дробного порядка для полного дробного дифференциала потенциала Гельмгольца получим

$$P = -\frac{\Gamma(2-\alpha)}{V^{1-\alpha}} \frac{\partial^{\alpha} F}{\partial V^{\alpha}} \bigg|_{T}.$$
(4)

Здесь α — показатель производной дробного порядка ($0 < \alpha \leq 1$), $F = -kT \ln Z$ — потенциал Гельмгольца, $Z = \sum_{i} \exp(-\varepsilon_i/kT)$ — статистическая сумма [11]. Производная дробного порядка определяется выражением

$$\frac{\partial^{\alpha} F(V)}{\partial V^{\alpha}} = \frac{1}{\Gamma(1-\alpha)} \frac{\partial}{\partial V} \int_{0}^{V} \frac{F(v)}{(V-v)^{\alpha}} \mathrm{d}v.$$
(5)

Для $\alpha = 1$ выражения (2–4) совпадают с соответствующими выражениями традиционной термодинамики. Для $\alpha \neq 1$, исходя из выражения для статистической суммы газа и выражения (4), можно получить следующее однопараметрическое фрактальное уравнение состояния со вторым вириальным коэффициентом для реальных газов [13]

$$P = \rho R_g T \left\{ 1 + \rho B + (1 - \alpha) \left[\ln \left(\frac{eM}{\rho N_A} \left(\frac{mkT}{2\pi\hbar} \right)^{3/2} \right) + \psi(1) - \psi(2 - \alpha) - \rho B \right] \right\}.$$
 (6)

Здесь P — давление (Па), ho — плотность (кг/м³), R_{q} универсальная газовая постоянная (Дж/(кг K)), T температура (K), *B* — второй вириальный коэффициент $(M^3/\kappa\Gamma)$, е — экспонента, M — молярная масса (кг/моль), $N_{\rm A}$ — число Авогадро (моль⁻¹), m — масса молекулы (атома) (кг), k — постоянная Больцмана (Дж/К), \hbar — постоянная Планка (Джс), $\psi(x) =$ $\Gamma'(x)/\Gamma(x)$ — логарифмическая производная Гаммафункции [14]. Слагаемые внутри скобок выражения (6), при подстановке единиц измерения во множители, преобразуются в безразмерный результат. Множители под логарифмом также, после подстановки единиц измерения, дают безразмерный результат. Единицей измерения произведения $\rho R_q T$ является Паскаль. Таким образом, формула (6) не является интерполяционной, а есть аналитическое выражение для фрактального уравнения состояния, полученное, используя математический аппарат интегро-дифференцирования дробного порядка. При $\alpha = 1$ уравнение (6) преобразуется в классическое уравнение состояния реального газа. Можно утверждать, что переход к дробной производной в термодинамике означает неявный учет взаимодействия между частицами, поскольку уравнение состояния (6) является фрактальным уравнением состояния, отличным от уравнения состояния идеального газа.

Ранее было показано [15], что показатель производной дробного порядка α может зависеть как от плотности, так и от температуры, поэтому при дальнейшем дифференцировании формулы (6) для нахождения изотермической сжимаемости, необходимо учитывать этот факт. Также, можно использовать обычное дифференцирование для нахождения энтропии, а затем теплоемкости при постоянном объеме из формулы (6). Подробно вывод уравнения состояния приведен в работах [13, 16]. В работе [13] приведен вывод аналитических выражений для расчета энтропии и теплоемкости при постоянном объеме с использованием аппарата интегродифференцирования дробного порядка.

3. РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Для расчета использованы следующие параметры метана: молярная масса $M(CH_4) = 16.0426 \times 10^{-3} \text{ кг/моль}$, молекулярная масса $m(CH_4) = 2.66394 \times 10^{-26} \text{ кг.}$ Изотермы уравнения состояния метана рассчитаны в диапазоне температур от 300 K до 1000 K. Экспериментальные значения взяты из [17].

На рисунке 1 представлены диаграммы изотерм уравнения состояния метана для различных температур. Символами показаны экспериментальные значения из [17], пунктирными линиями показаны расчетные изотермы. Как видно из рисунка 1, расчетные результаты хорошо согласуются с экспериментом. Предлага-

Рисунок 1. Расчетные изотермы уравнения состояния метана для различных температур в сравнении с экспериментом. Символами показаны экспериментальные данные из [17]. Пунктирными линиями показан расчет. 1 - T = 300 K, 2 - T = 400 K, 3 - T = 500 K, 4 - T = 600 K, 5 - T = 700 K, 6 - T = 800 K, 7 - T = 900 K, 8 - T = 1000 K.

емая математическая модель является полуэмпирической, поэтому для расчета необходимы экспериментальные данные. Подгоночным параметром является показатель производной дробного порядка α . Как отмечено выше, α зависит от плотности и температуры, поэтому зависимость $\alpha(\rho)$ для каждой температуры была аппраксимирована полиномом, который использовался для вычисления точного значения α в каждой точке изотермы. Общий вид полинома и точные коэффициенты, использованные для расчета, приведены далее (выражение (7), таблица 2).

Кроме того, в расчете используется второй вириальный коэффициент *B*. Его значение определяется из литературы.

Рисунок 2. Зависимость второго вириального коэффициента метана от температуры. Символами показаны данные из [17]. Пунктиром показана аппроксимационная линия.

На рисунке 2 представлена зависимость второго вириального коэффициента *B* от температуры *T*. Кружками показаны данные из литературы [17]. Для того, чтобы иметь возможность производить расчет для любой необходимой температуры, литературные данные аппроксимированы полиномом. На рисунке 2 аппрокси-

<i>T</i> (K)	300	400	500	600
$B \times 10^{-3} \; (\mathrm{m}^3/\mathrm{kr})$	-2.766	-1.02	-0.069	0.525
T (K)	700	800	900	1000
$B \times 10^{-3} ({ m m}^3/{ m kr})$	0.93	1.226	1.453	1.634

Таблица 1. Значения второго вириального коэффициента, использованные в расчете.

мация показана пунктирной линией. Общий вид полинома, использованного для аппроксимации литературных значений следующий:

$$f(x) = a_0 + a_1 x + a_2 x^{b_0}.$$
 (7)

Переменная x в данном случае означает температуру T, а f(x) — второй вириальный коэффициент B(T). Значения подгоночных констант для аппроксимации B(T) следующие: $a_0 = 21.7694 \times 10^{-4}$, $a_1 = 35.0391 \times 10^{-8}$, $a_2 = -18.4744$, $b_0 = -1.43853$. В таблице 1 представлены точные значения второго вириального коэффициента, использованные для расчета.

Рисунок 3. Зависимость подгоночного параметра от плотности метана. 1 - T = 300 K, 2 - T = 400 K, 3 - T = 500 K, 4 - T = 600 K, 5 - T = 700 K, 6 - T = 800 K, 7 - T = 900 K, 8 - T = 1000 K. Пунктиром показаны аппроксимационные линии.

Следует отметить, что, например, в работе [18] используется около 10 подгоночных параметров, в то время как в нашей модели подгоночным является только показатель производной дробного порядка α . Ранее, на примере воды [15] показано, что α может зависеть как от плотности вещества ρ , так и от температуры T. Характер такой зависимости для различных веществ различен. Поэтому а нужно подгонять для каждой экспериментальной точки изотермы. В результате, для каждой температуры мы имеем целое семейство немного отличающихся расчетных изотерм. Рисунок 3, представляющий зависимость подгоночного параметра α от плотности ρ , иллюстрирует этот расчетный этап. Символами показаны значения, полученные путем подгона α под экспериментальные точки изотермы для различных температур. Пунктиром показана аппроксимация расчетных данных. Для аппроксимации зависимости $\alpha(\rho)$

Таблица 2. Значения подгоночных констант для аппроксимации зависимости $\alpha(\rho)$.

T (K)	a_0	a_1	a_2	b_0
300	1.0016	-1.0253×10^{-4}	-1.929×10^{-10}	3.504
400	1.0007	-4.9496×10^{-5}	-1.5753×10^{-9}	3.1381
500	1.0004	-2.6776×10^{-5}	-6.1062×10^{-9}	2.8899
600	1.0001	-1.1515×10^{-5}	-1.8788×10^{-8}	2.6805
700	1.0001	-6.5649×10^{-6}	-3.4411×10^{-8}	2.5583
800	0.9999	3.8855×10^{-6}	-9.2051×10^{-8}	2.3725
900	0.9999	3.0969×10^{-6}	-9.6157×10^{-8}	2.3532
1000	0.9999	6.9799×10^{-6}	-1.4972×10^{-7}	2.2642

также использован полином (7). В данном случае переменная x означает плотность ρ , а f(x) — показатель производной дробного порядка $\alpha(\rho)$. Точные значения коэффициентов полинома (7), использованные для расчета, представлены в таблице 2.

Как видно из рисунка 3, с увеличением температуры, кривая зависимости $\alpha(\rho)$ пролегает выше, наклон уменьшается, температурная зависимость ослабевает. Все кривые зависимости $\alpha(\rho)$ с уменьшением плотности стремятся к точке $\alpha = 1$. Это означает, что по мере разряжения газа α стремится к единице, а фрактальное уравнение состояния переходит в классическое уравнение состояния реального газа. Характер зависимости $\alpha(\rho)$ для метана отличается от аналогичных расчетов, полученных для водяного пара [15]. Это, вероятно, обусловлено разными теплофизическими свойствами веществ. Поэтому полученную зависимость $\alpha(\rho)$ можно считать уникальной для метана. Исходя из того, что температурная зависимость α ослабевает при приближении к 1000 К и предполагая, что при больших температурах изменение этой зависимости будет незначительным, зависимость $\alpha(\rho)$ для 1000 К можно аппроксимировать полиномом, и затем использовать его при расчете изотерм уравнения состояния в окрестности температуры 1000 К, как для меньших, так и для больших температур.

Подход, при котором плотностная зависимость подгоночного параметра аппроксимируется полиномом, упрощает использование модели и делает ее более универсальной.

4. ЗАКЛЮЧЕНИЕ

Таким образом, произведен расчет изотерм уравнения состояния метана для температур от 300 K до 1000 К. Полученные расчетные результаты хорошо согласуются с экспериментальными данными. Это показывает, что применение фрактального однопараметрического уравнения состояния эффективно для исследования не только простых веществ, таких как инертные газы, но и для более сложных, таких как метан.

Недостаток предложенной методики состоит в том, что подгоночный параметр α , зависит не только от плотности вещества, но и от его температуры. Для метана этот факт является незначительным, если значения α для различных плотностей, полученные путем подгонки под экспериментальные значения, аппроксимировать полиномом, а затем использовать его в расчетах. Показано, что с увеличением температуры кривая зависимости $\alpha(\rho)$ пролегает выше, наклон уменьшается, температурная зависимость ослабевает. Такое поведение параметра α является уникальным для метана. Исходя из того, что температурная зависимость α ослабевает при приближении к 1000 К и предполагая, что при больших температурах изменение этой зависимости будет незначительным, зависимость $\alpha(\rho)$ для 1000 К можно использовать для расчетов изотерм уравнения состояния как для меньших, так и для больших температур.

Следует отметить, что применяемое уравнение состояния основано на уравнении состояния идеального газа, поэтому хорошо подходит для расчета изотерм при больших температурах. При приближении к температуре линии насыщения (к жидкой фазе) точность расчета будет резко уменьшаться. Это связано тем, что вклад потенциальной энергии атомов (молекул) в общую энергию системы не учитывается.

Все расчеты проведены с помощью специально разработанного программного обеспечения [19].

СПИСОК ЛИТЕРАТУРЫ

- 1. Баянов И М, Гималтдинов И К и Столповский М В 2023 *ТВТ* **61** 251–257
- Власкин М С, Белов П В, Липатова И А, Григоренко А В, Школьников Е И, Курбатова А И и Фортов В Е 2022 ТВТ 60 888-896
- Ягодников Д А, Ворожеева О А и Новиков А О 2022 ТВТ 60 774–780
- 4. Yang H, Bu X, Song Y and Shen Y 2022 Measurement 204

112091

- Feng Y, Chang J, Chen X, Zhang Q, Wang Z, Sun J and Zhang Z 2021 Opt. Quantum Electron. 53 1–11
- Sussmann R, Forster F, Rettinger M and Jones N 2011 Atmos. Meas. Tech. 4 1943–1964
- 7. Ишков А Г 2018 Роль метана в изменении климата (Москва: НИИПЭ)
- Минобрнауки Российской Федерации 5 февраля 2021 О полигонах для разработки и испытаний технологий контроля углеродного баланса Приказ 74
- Самко С Г, Килбас А А и Маричев О И 1987 Интегралы и производные дробного порядка и некоторые их приложения (Минск: Наука и техника)
- 10. Kilbas A A, Srivastava H M and Trujillo J J 2006 Theory and Applications of Fractional Differential Equations (Amsterdam: Elsevier)
- Ландау Л Д и Лифшиц Е М 2002 Статистическая физика (Теоретическая физика № 5) (Москва: Физматлит)
- 12. Сивухин Д В 2005 Термодинамика и молекулярная физика (Общий курс физики № 2) (Москва: Физматлит)
- 13. Мейланов Р П и Магомедов Р А 2014 ИФЖ 87 1455-65
- Янке Е, Эдме Ф и Лёш Ф 1964 Специальные функции и формулы, графики, таблицы (Москва: Наука)
- 15. Магомедов Р А и Ахмедов Э Н 2023
 ${\it И} \Phi {\it K}$ 96 1062–67
- Magomedov R A, Meilanov R R, Meilanov R P, Akhmedov E N, Beybalaev V D and Aliverdiev A A 2018 J. Therm. Anal. Calorim. 133 1189-94
- 17. Сычев В В, Вассерман А А, Загорученко В А, Козлов А Д, Спиридонов Г А и Цымарный В А 1979 Термодинамические свойства метана: ГСССД (Москва: Изд. Стандартов)
- 18. Каплун А Б и Мешалкин А Б 2019 *ЖФХ* 93 1289-96
- 19. Ахмедов Э Н, Магомедов Р А и Аливердиев А А 2021 Fract EOS Свидетельство о государственной регистрации программы для ЭВМ 2021661219