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Abstract. Research results for discharge initiated by wire explosion in hydrogen at initial pressures of
≈ 32 MPa and current amplitudes of ≈ 1.3 MA are presented. The mean electric field in the discharge
channel and mean near electrode voltage drops were determined in an experimental series with steel
electrodes for different interelectrode gaps from 1 to 2 cm at the time of the current maximum. The
near electrode voltage drop was of ≈ 3.5 kV, and electric field strength in the discharge channel was of
≈ 0.7 kV/cm at these conditions. https://doi.org/10.33849/2023308

1. INTRODUCTION

The interaction of intense energy flux with matter at
extreme conditions is one of the most exciting areas of
science [1]. A pulsed discharge with a current in mega-
ampere range is one of the most effective and conventional
ways to obtain plasma with extreme parameters [2–6].
The discharge can be used as a laboratory model
of astrophysical objects [7]: for physical simulation of
astrophysical jets [7, 8], modeling radiative transport in
star photosphere [9], equations of state for matter [1], etc
[1, 7, 10]. High-current discharges in a high-density gas
give certain advantages in obtaining the extreme states of
matter [2, 11–13] and, in turn, have specific characteristic
features [2, 11, 13–15].

Near-electrode voltage drops and the electric field
in the discharge channel are one of the most important
characteristics of a gas discharge [14, 16–18]. The near-
electrode voltage drops set the energy flux to the electrode
surface [14, 16, 17], and the field in the channel determines
the energy balance in the discharge channel [14, 17].
Usually, these values can be measured from dependence
of the voltage drops across the channel on the discharge
gap length [14, 19–21]. Near-electrode voltage drops can
take with this dependence extrapolation to zero length
[14, 19–21].

The values of near-electrode voltage drops, not
exceeding tens of volts for arcs with current up to tens of
kiloamperes for various gas media and electrode materials
[17, 19, 22], have a gradual increase with increasing pressure
[14], mainly due to the anode drop [21]. The total near-
electrode drops exceed hundreds and thousands of volts for
a current rise rate above 108 A/s and current amplitude
above 50 kA [13, 14, 20, 23, 24], especially for discharge
in light gases [13, 20]. The electric field in the discharge
channel is grown with increasing pressure [11, 13–15, 20].

New data about the voltage drops across the channel
versus the discharge gap length at current maximum at
initial hydrogen pressures of ≈ 32 MPa and current
amplitudes of ≈ 1.35 MA are presented in the paper
in the development of the research presented at the last

several International Conferences on Equations of State for
Matter [25–30]. The presented data naturally expands the
data concerning similar parameters for discharges at lower
currents and other initial pressures [23, 24, 30].

2. EXPERIMENTS, RESULTS AND

DISCUSSIONS

The discharge was initiated by an explosion of copper
wire with a diameter of 0.5mm placed between hemispheric
steel electrodes with a diameter of 2 cm (see the photo of
the electrode in [12]). The electrodes were placed along
the chamber axis. The initial gap 𝐿 between them was
in the range of 1–2 cm. The discharge chamber diameter
was 6 cm. The internal free volume of the chamber with
electrode units was ≈ 250 cm3. Before the experiment, the
discharge volume was evacuated to a pressure of 2.5 kPa
and blown through with hydrogen to ensure the necessary
purity of the working gas. The voltage across the discharge
load was measured using a high-ohmic resistive divider with
transformer decoupling, which was connected to the load
contacts. The current was measured using the Rogowski
coil. The measurement error was within 5%. A detailed
description of the experimental setup was presented in
[12, 31]. Six units of the modular capacitive system [32]
were used at the initial voltage of 10 kV and storage energy
≈ 0.6 MJ in each experiment.

The parameters of the experiments in the series are
presented in table 1. Current curves and corresponding
voltage signals for the three experiments in the series are
presented in figure 1. The variations of the discharge current
amplitude and voltage are a feature of a mega-ampere
discharge channel formation with equal initial parameters.
Current and voltage curves for the same gap length of 1 cm
are shown in figures 1 and 2 to illustrate the signal variation
at the same initial parameters. Current amplitudes 𝐽max

were of ≈ 1.3 MA and initial hydrogen pressures 𝑃0 were
of ≈ 32 MPa. Approximate voltage values across the
discharge gap 𝑉𝐽max

at the moment of current maximum
are determined by linear fitting of the voltage signal in a
time base of 20 𝜇s near current maximum as shown in the
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Таблица 1. Parameters of the experiments: 𝐿 — interelectrode gap, 𝑃0 — initial hydrogen pressure, 𝐽max — current maximum and
𝑉𝐽max — fitted voltage across the discharge gap at the moment of current maximum.

𝐿 (cm) 𝑃0 (MPa) 𝐽max (MA) 𝑉𝐽max (kV)

1.0 31.5 1.35 4.3
1.0 32.2 1.25 4.1
1.5 29.0 1.1 4.4
1.5 32.0 1.2 5.0
1.9 33.3 1.4 5.0
2.0 31.6 1.2 4.6
2.0 32.2 1.3 5.0
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Figure 1. Discharge current (a) and voltage across the
discharge gap (b): 1 and 2 — interelectrode gap is 1 cm, and
3 — 2 cm.

additional frame in figure 1(b). The linear fitting procedure
is required for averaging voltage pulsations due to discharge
channel oscillations.

The dependence of 𝑉𝐽max on the discharge gap length
𝐿 is shown in figure 2. The cutoff value upon approximation
of this dependence to zero length and the dependence slope
can be considered as estimates of the mean near electrode
drops and mean electric field strength in the discharge
channel. The main assumption for this approximation is
the formation of a uniform discharge channel with short
near-electrode sections.

3

4

5

6

0 1 2

V
o
lt

ag
e 

(k
V

)

 

Length (cm)

 

3

4

5

6

0 1 2

V
o
lt

ag
e 

(k
V

)

 

Length (cm)

 

Figure 2. Voltage across the discharge gap at the moment of
current maximum.

3. CONCLUSION

The mean electric field in the discharge channel and
mean near-electrode voltage drops were determined in
an experimental series with steel electrodes for different
interelectrode gaps from 1 to 2 cm at the time of the current
maximum. The near electrode voltage drop was of ≈ 3.5 kV,
and electric field strength in the discharge channel was of
≈ 0.7 kV/cm at these conditions. The data are consistent
with the previously obtained data with other ranges of
initial parameters concerning dependencies of the field and
near electrode voltage drops versus pressure, current, and
current rise rate.
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