Изучение транспортных свойств н-нонана в модели SAFT- γ Mie

О. М. Смирнов¹, Д. Ю. Ленёв^{2,1} и В. В. Писарев^{2,1,3}

¹ Московский физико-технический институт (государственный университет), Институтский пер., 9, Долгопрудный 141701, Россия

² Объединенный институт высоких температур РАН, Ижорская ул., 13, стр.2, Москва 125412, Россия

³ Национальный исследовательский университет «Высшая школа экономики», Мясницкая 20, Москва, Россия

E-mail: smirnov.om@phystech.edu

Статья поступила в редакцию 13 декабря 2022 г.

Аннотация. Проанализирована точность расчета коэффициентов диффузии и вязкости для н-нонана (C_9H_{20}) в модели SAFT- γ Міе. Выполнено моделирование н-нонана с помощью модели SAFT- γ Міе методом молекулярной динамики с помощью программного пакета LAMMPS. Расчеты проводились для температуры 323 К и давлений в промежутке от 10 до 80 МПа. С помощью формулы Эйнштейна-Смолуховского был определен коэффициент самодиффузии. Через формулу Грина-Кубо для автокорреляционной функции сдвиговых напряжений был получен коэффициент сдвиговой вязкости. На основании зависимости диффузии от обратной вязкости вычислен гидродинамический радиус молекулы н-нонана. Данные результаты показывают, что SAFT- γ Міе модель удовлетворительно воспроизводит транспортные свойства н-нонана. https://doi.org/10.33849/2022204

1. ВВЕДЕНИЕ

Молекулярная динамика является надежным методом исследования структурных и теплофизических свойств реальных молекулярных систем при условии, что для описания взаимодействия между частицами доступно соответствующее силовое поле. Алканы обладают простой структурой и высокой практической значимостью, поэтому большое количество исследований было посвящено моделированию и разработке многочисленных силовых полей для них [1–3].

Одной из первых проблем при моделировании алканов является поиск баланса между точностью модели и вычислительной сложностью. Полноатомные модели, например, OPLS-AA (Optimized potential for liquid simulation — all-atom) [4], явно воспроизводят все атомы молекулы, из-за чего они требуют значительных вычислений. В моделях объединенного атома, например, TraPPE-UA (Transferable potential for phase equilibria — united-atom) [5], тяжелые атомы (углерод, кислород, азот) объединяются со связанными атомами водорода в эффективные частицы для уменьшения вычислительных затрат, хоть и с пониженной точностью получаемых с их помощью результатов.

Крупнозернистое огрубление — следующий шаг на пути упрощения модели. Так называется подход в моделировании, который заключается в выборе целых групп атомов в качестве элементарных структурных единиц, что позволяет значительно сократить количество необходимых вычислений за счет более грубого расчета межчастичного взаимодействия. В рамках крупнозернистого формализма взаимодействие между новыми элементарными структурными единицами представляется с помощью эффективного потенциала, разработанного для сохранения точного описания интересующих свойств моделируемой молекулы.

В недавней работе [6] были получены коэффициенты для модели SAFT- γ Mie (Statistical Associating Fluid Theory using Mie potential) при представлении н-алканов в виде крупных "зерен".

В настоящей работе изучается точность огрубленной модели для н-нонана (C_9H_{20}), молекулы которого достаточно длинные, чтобы для него было актуально крупнозернистое приближение. Свойства н-нонана хорошо изучены и при этом он является типичным представителем жидких предельных углеводородов. Таким образом, проверка его свойств в модели SAFT- γ Міе позволяет охарактеризовать точность модели для этого класса соединений.

Исследуем точность расчета уравнения состояния и транспортных свойств н-нонана: коэффициента самодиффузии и сдвиговой вязкости.

2. ОПИСАНИЕ РАСЧЕТА

2.1. SAFT- γ модель

В рассматриваемой SAFT- γ модели [6], н-нонан представляется в виде трех зерен сферической формы двух типов, соединенных в цепочку. "Зерна" соответствуют группам CH₃-CH₂-CH₂- (тип Т) и -CH₂-CH₂- (тип М). Массы зерен составляют $m_1=43.09$ г/моль и $m_2=42.08$ г/моль. Взаимодействие между двумя "зернами" происходит по обрезанному Міе-потенциалу:

езанному IVIIe-потенциалу. $E(r_{kl}) = C_{kl} \varepsilon_{kl} \left[\left(\frac{\sigma_{kl}}{r_{kl}} \right)^{\lambda_{kl}^{\sigma}} - \left(\frac{\sigma_{kl}}{r_{kl}} \right)^{\lambda_{kl}^{a}} \right], r_{kl} < r_c, \quad (1)$

где r_{kl} — межцентровое расстояние между "зернами", ε_{kl} — глубина потенциальной ямы, σ_{kl} — диаметр "зерна", λ_{kl}^r и λ_{kl}^a — показатели степени, контролирующие величину отталкивающего и притягивающего вкладов. Использование независимых показателей степени при отталкивающем и притягивающем вкладах в Міепотенциале позволяет универсально описывать межмолекулярные взаимодействия, что приводит к надежному описанию теплофизических свойств, что было продемонстрировано в ряде исследований [7–9]. Радиус обрезания равен $r_c=16$ Å. Другие коэффициенты для н-нонана представлены в таблице 1.

Таблица 1. Коэффициенты SAFT- γ Міе-потенциала

k	l	$(\varepsilon_{kl}/k_B)/K$	$\sigma_{kl}/{ m \AA}$	λ_{kl}^r	λ^a_{kl}
Т	Τ	358.37	4.5012	15.947	6.00
Μ	Μ	377.14	4.1840	16.433	6.00
Τ	Μ	345.72	4.3426	16.188	6.00

Константа
$$C_{kl}$$
 определяется как:
$$C_{kl} = \frac{\lambda_{kl}^r}{\lambda_{kl}^r - \lambda_{kl}^a} \left(\frac{\lambda_{kl}^r}{\lambda_{kl}^a}\right)^{\lambda_{kl}^a/(\lambda_{kl}^r - \lambda_{kl}^a)}. \tag{2}$$

Внутримолекулярные же взаимодействия описываются гармоническими потенциалами как для энергии

растяжения связей, так и для энергии углового изгиба:
$$U_{intra} = \frac{k_{bond}}{2} (r-r_0)^2 + \frac{k_{angle}}{2} (\theta-\theta_0)^2, \tag{3}$$
 где $k_{bond}/k_B = 6666 \text{ K/Å}^2$ – константа жесткости связи,

 $k_{angle}/k_B = 2318 \; {
m K/pag^2} - {
m константа} \; {
m жесткости} \; {
m изгиба},$ $r_0 = 4.34 \text{ Å}$ — равновесная длина связи, $\theta_0 = 159^{\circ}$ равновесный угол между связями.

Методика

Для расчета термодинамических свойств используется программный пакет LAMMPS (Large-scale Atomic and Molecular Massively Parallel Simulator) [10]. В начальном состоянии создается ячейка с 1000 молекул н-нонана, расположенных в узлах простой кубической решетки с ребром в 9 А с периодическими граничными условиями. Была проведена проверка сходимости плотности по числу частиц при заданном давлении, и установлено, что она достигается примерно при вдвое меньшем числе частиц.

Молекулам придаются случайные скорости с нормальным распределением, соответствующим температуре в 423 К. Расчет происходит в системе отсчета, связанной с центром масс системы. Подключается термостат Нозе-Гувера [11] с характерным временем выхода на целевую температуру равным 100 шагам моделирования. В изотермо-изобарическом ансамбле для интересующих давлений система релаксирует в течении 1 наносекунды с шагом в 1 фемтосекунду. Затем в течении 5 наносекунд система охлаждается с помощью термостата до 323 К и затем релаксирует при новой температуре. При каждом из рассматриваемых давлений наблюдается 15 независимых систем, сгенерированных по указанному алгоритму и отличающихся генерацией начальных скоростей, для получения лучшего статистического усреднения. При этом средняя флуктуация температуры была до 4 К.

После этого система наблюдается в течении 25 наносекунд с шагом моделирования в 5 фемтосекунд при активном термостате Нозе-Гувера в каноническом ансамбле. Также каждые 10000 шагов выводятся координаты центра масс каждой молекулы, и каждый шаг выводятся элементы матрицы тензора давлений.

ТРАНСПОРТНЫЕ КОЭФФИЦИЕНТЫ 3.

Изотерма

Сравнение полученной зависимости усредненных плотностей от усредненных давлений для вышедших на

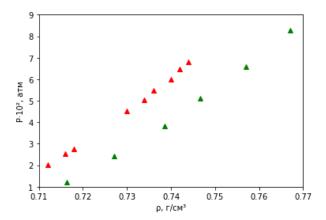
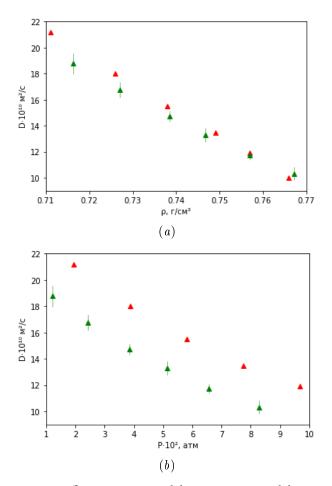


Рисунок 1. Графики зависимости давления от плотности. Зеленым представлены данные вычислений, красным — экспериментальные данные [12].

равновесие систем с экспериментально полученной зависимостью плотности от давления [12] представлено на рисунке 1.

На графике заметно отклонение получившихся при моделировании данных. Система с SAFT- γ моделью н-нонана при той же плотности обладала меньшим давлением, чем она должна была бы на основе экспериментальных данных [12]. По данным из [13] можно заметить, что подобная черта является особенностью всех моделей. Однако в случае малых давлений плотность, полученная с помощью OPLS-AA, отличается примерно на 5 процентов, а исследуемая огрубленная модель дает ошибку около 3 процентов. В случае высоких давлений результаты применения всех моделей схожи.

Следует отметить, что по данным работы [13] точность воспроизведения кривой сжатия изооктана в модели TraPPE-UA также выше, чем в OPLS-AA. Такая ситуация, когда менее подробная модель точнее описывает свойства, несколько необычна. Вероятно, это связано с тем, что в модели OPLS-AA используются одни и те же параметры Леннард-Джонсовских взаимодействий для атомов углерода и водорода в середине и в конце цепи. В огрубленных же моделях используются оптимизированные параметры невалентных взаимодействий отдельно для концевых и серединных групп.


3.2. Самодиффузия

Коэффициент самодиффузии был определен через среднеквадратичные смещения центров масс молекул по формуле Эйнштейна-Смолуховского

$$D = \lim_{t \to \infty} \frac{<\Delta \vec{r}^2(t)>}{6t}. \tag{4}$$
 После определения коэффициента самодиффузии для

каждой траектории, результат был усреднен по ним для каждого рассматриваемого давления. Получившиеся результаты вместе с экспериментальными данными [14] представлены на рисунке 2.

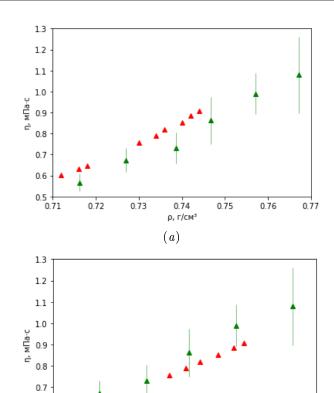
Зависимость коэффициента самодиффузии для SAFT - γ модели н-нонана от плотности совпала с экспериментальными данными. Однако при тех же давлениях коэффициент диффузии был меньше, чем экспериментально полученный. Похожее отличие наблюдалось в [13] для OPLS-AA.

Рисунок 2. Зависимости коэффициента самодиффузии от плотности (a) и давления (b). Зеленым представлены данные вычислений, красным — экспериментальные данные [14].

Была проведена дополнительная оценка сходимости по размеру системы для коэффициента диффузии при помощи метода, описанного в [15]. Оценка разности коэффициента диффузии для бесконечной моделируемой ячейки и коэффициента диффузии в зависимости от размера ячейки становится меньше погрешности при размерах моделируемой ячейки, по порядку величины совпадающих с выбранным.

3.3. Сдвиговая вязкость

Коэффициент сдвиговой вязкости рассчитывается по формуле Грина–Кубо через автокорреляционную функцию сдвиговых напряжений:


$$\eta(P_{xy}) = \frac{V}{k_B T} \int_{o}^{\infty} < P_{xy}(t) P_{xy}(t+\tau) > d\tau, \tag{5}$$
 где V — объем ячейки моделирования, P_{xy} — элемент

где V — объем ячейки моделирования, P_{xy} — элемент тензора давлений. Определим коэффициент сдвиговой вязкости для элементов P_{xy} , P_{xz} и P_{yz} тензора давления после чего усредним полученный результат:

после чего усредним полученный результат:
$$\eta = \frac{\eta(P_{xy}) + \eta(P_{xz}) + \eta(P_{yz})}{3}. \tag{6}$$
 Кроме того, проведем усреднение по всем траекто-

Кроме того, проведем усреднение по всем траекториям. Получившиеся результаты, вместе с экспериментальными данными [12] представлены на рисунке 3.

Получившаяся же зависимость коэффициента сдвиговой вязкости от давления для модели совпала с экспериментальными данными, в то время как при той же плотности у модели коэффициент вязкости полу-

Рисунок 3. Зависимости коэффициента сдвиговой вязкости от плотности (a) и давления (b). Зеленым представлены данные вычислений, красным — экспериментальные данные [12].

(b)

Р.10², атм

0.6

0.5

чался меньше, чем полученный экспериментально [12]. Наблюдается заметно лучшее совпадение с экспериментом для н-нонана (C_9H_{20}) , чем в [13] TraPPE-UA и OPLS-AA для изооктана (C_8H_{18}) .

4. ГИДРОДИНАМИЧЕСКИЙ РАДИУС

На основе полученных значений коэффициентов самодиффузии и сдвиговой вязкости определим значение гидродинамического радиуса $SAFT-\gamma$ модели н-нонана, воспользовавшись соотношением Стокса—Эйнштейна.

$$r = \frac{k_B T}{6\pi D\eta}. (7)$$

Построим график зависимости коэффициентов самодиффузии от обратной вязкости, который представлен на рисунке 4.

На графиках заметно смещение полученной в расчетах зависимости от экспериментальной. При одинаковых коэффициентах самодиффузии, коэффициент обратной сдвиговой вязкости, рассчитанный для модели, получался больше, чем ожидалось.

Данное смещение, очевидно, связано с наблюдаемым смещением в изотерме на рисунке 1. Из-за того, что в системе было меньшее давление при тех же плотностях, коэффициент сдвиговой вязкости оказывался меньше. И, следовательно, коэффициент обратной вязкости — больше.

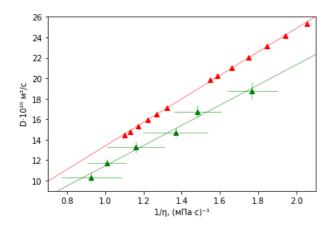


Рисунок 4. Графики зависимости коэффициента самодиффузии от обратного коэффициента сдвиговой вязкости. Зеленым представлены данные вычислений, красным — экспериментальные данные [12, 14]. Вертикальные и горизонтальные линии на символах указывают стандартную неопределенность вычисления коэффициентов самодиффузии и вязкости, соответственно.

Проведя линейную аппроксимацию с помощью метода наименьших квадратов графика на рисунке 4 для данных эксперимента и моделирования, гидродинамические радиусы получились соответственно равными: $r_1=2.06\pm0.03~{\rm \AA}$ и $r_2=2.41\pm0.18~{\rm \AA}$

Таким образом гидродинамический радиус для данных моделирования оказался больше ожидаемого результата, однако, находится в пределах 2 величин погрешности. То есть наблюдается сходство между моделируемым и экспериментальным эффективным радиусом, что отмечалось и для более точных моделей [13].

5. ЗАКЛЮЧЕНИЕ

При моделировании SAFT- γ Міе модели н-нонана методом молекулярной динамики с помощью программного пакета LAMMPS для температуры 323 К и давлениях в промежутке от 10 до 80 МПа были получены зависимости давления от плотности, коэффициента самодиффузии и сдвиговой вязкости от плотности и давления. Также был вычислен гидродинамический радиус молекулы н-нонана в данной модели.

Расчет кривой изотермического сжатия показывает, что модель незначительно завышает плотность — отличие от экспериментальных данных для тех же давлений составляет не более 3% (или на $0.2~\mathrm{r/cm}^3$).

Зависимость же коэффициента самодиффузии от плотности совпала с экспериментально полученной. Однако зависимость от давления оказалась заниженной. При одинаковых давлениях у модели коэффициент самодиффузии был на 20% меньше, чем в эксперименте.

Схожие результаты получились для коэффициента сдвиговой вязкости, зависимость которого от давления в рамках погрешности вычислений совпала с экспериментально полученной. Зависимость же от плотности

оказалась заниженной. У модели коэффициент вязкости был меньше, чем в эксперименте при одинаковых плотностях.

И наконец, зависимость коэффициента самодиффузии от обратного коэффициента сдвиговой вязкости оказалась смещенной относительно зависимости, полученной в эксперименте, что связано с выведенной ранее смещенной изотермой, из-за которой тем же плотностям и соответственно коэффициентам самодиффузии соответствовали большие давления и меньшие обратные вязкости. Получившийся гидродинамический радиус совпал в пределах двух σ с величиной рассчитанного радиуса для данных, полученных экспериментально [12, 14].

Подводя итоги, при помощи SAFT- γ Міе-модели для н-нонана были получены корректные зависимости коэффициента самодиффузии от плотности и коэффициента сдвиговой вязкости от давления, несмотря на отличие изотермы от ожидаемой. Величина гидродинамического радиуса продемонстрировала удовлетворительное согласие с полученной из экспериментальных данных величиной. Таким образом, рассматриваемая модель подходит для получения транспортных коэффициентов и в ряде случаев проявляет себя лучше, чем более точные модели, при этом являясь более простой для расчета.

СПИСОК ЛИТЕРАТУРЫ

- 1. Williams D E 1967 *J. Chem. Phys.* **47** 4680–4684
- Jorgensen W L, Madura J and Swenson C 1984 J. Am. Chem. Soc. 106 6638–6646
- Ungerer P, Lachet V and Tavitian B 2006 Oil Gas Sci. Technol. 61
- 4. Jorgensen W L, Maxwell D S and Tirado-Rives J 1996 J. Am. Chem. Soc. 118 11225–11236
- Martin M G and Siepmann J I 1998 J. Phys. Chem. B 102 2569–2577
- Rahman S U, Lobanova O R, Jiménez-Serratos G, Braga C, Raptis V, Müller E A, Jackson G, Avendaño C and Galindo A 2018 J. Phys. Chem. Biophys. 122 39 9161-9177
- Pot off J and Bernard-Brunel D 2009 J. Phys. Chem. Biophys. 113 14725-14731
- 8. Nielsen S O, Lopez C F, Srinivas G and Klein M L 2003 J. Chem. Phys. **119** 7043–7049
- Maerzke K and Siepmann J 2011 J. Phys. Chem. Biophys. 115 3452-3465
- Thompson A P et al 2022 Comput. Phys. Commun. 271 108171
- Shinoda W, Shiga M and Mikami M 2004 Phys. Rev. B 69 134103
- Assael M and Papadaki M I 1991 Int. J. Thermophys. 12 801–810
- 13. Kondratyuk N, Lenev D and Pisarev V 2020 J. Chem. Phys. ${\bf 152}~191104$
- 14. Winkelmann J Self-diffusion coefficient of nonane: Datasheet from physical chemistry · volume 15b1: "diffusion in gases, liquids and electrolytes" in springermaterials (https://doi.org/10.1007/978-3-540-73735-3_210) copyright 2017 Springer-Verlag GmbH Germany
- Kondratyuk N D and Orekhov M A 2020 J. Phys.: Conf. Ser. 1556 012048