О возможности оптической диагностики процессов лазерного ускорения электронов в плазме околокритической плотности

М. Е. Вейсман¹ и Н. Е. Андреев^{1,2}

¹ Объединенный институт высоких температур РАН, Ижорская ул., 13, стр.2, Москва

125412, Россия

² Московский физико-технический институт (государственный университет),

Институтский пер., 9, Долгопрудный 141701, Россия

E-mail: bme@ihed.ras.ru

Статья поступила в редакцию 6 декабря 2022 г.

Аннотация. Проведен анализ спектра синхротронного излучения электронов, совершающих бетатронные колебания и ускоряемых по механизму прямого лазерного ускорения в ионном канале, созданном мощным лазерным импульсом в плазме околокритической плотности. Показано, что характеристики спектра излучения отражают характерные параметры пространственных и энергетических распределений электронов. Это открывает возможность диагностики энергетического спектра электронов в плазменной мишени по спектру синхротронного излучения таких электронов, что важно ввиду возможных отличий такого спектра от спектра вылетевших из плазменной мишени электронов. https://doi.org/10.33849/2022111

1. ВВЕДЕНИЕ

Плазма околокритической плотности может быть получена при облучении малоплотной мишени из аэрогеля наносекундными предимпульсами мощных лазерных импульсов. Воздействие на такую плазму лазерного импульса с длиной много больше длины плазменной волны и с мощностью, превышающей критическую для релятивистской самофокусировки мощность, приводит к образованию в такой плазме полностью или частично свободного от электронов ионного канала, в котором по механизму прямого лазерного ускорения [1, 2] в квазистационарных электрических и магнитных полях могут эффективно ускоряться до энергий в десятки – сотни МэВ сгустки электронов, заряд которых может достигать при этом величин порядка 1 мкКл [3, 4]. Такие сгустки ускоренных электронов могут далее использоваться для создания мощных источников коротковолновых излучений [5]. В свою очередь, бетатронное излучение электронов, ускоряемых в ионном канале, может быть использовано для диагностики динамики таких электронов в канале и их энергетического спектра, который может отличаться от спетра электронов, вылетевших из плазменной мишени и зарегистрированных детектором.

В настоящей работе показано, что путем подбора параметров, характеризующих пространственные и энергетические распределения ускоряемых в ионном канале электронов, а также число таких электронов, возможно достаточно аккуратно описать спектр излучения, что и определяет возможности диагностики характеристик ускоряемых электронов.

В качестве тестового спектра использован спектр излучения электронов, полученный при помощи моделирования методом частиц в ячейке в работе [6] для параметров, соответствующих эксперименту [5]. В этом эксперименте использовался лазерный импульс с длиной волны 1.053 мкм, излучаемый лазером на неодимовом стекле, фокусируемый в эллиптическое пятно с диаметрами на половине интенсивности (12 ± 2) мкм и (18 ± 2) мкм. Энергия лазерного излучения на полувысоте фокального пятна $E_{\rm FWHM}$ составляла 17-22 Дж. Пиковая лазерная интенсивность достигала $2.5\times10^{19}~{\rm Bt/cm^2}$ при длительности 750 ± 250 фс. В качестве мишени использовались слои триацетатной целлюлозы объемной плотностью 2 мг/см³ и толщиной 300–400 мкм.

2. РАСЧЕТЫ СПЕКТРА И ПОДБОР ПАРАМЕТРОВ

Для разработки методов диагностики энергетического спектра и числа частиц или заряда ускоренных в ионном канале электронов проанализируем характеристики испускаемого этими электронами излучения в зависимости от их параметров. Для этого будем рассматривать число квантов $N_{0.1\%BW}$, излученных в частотный интервал 0.1% от частоты кванта ω , и рассчитывать зависимость $N_{0.1\%BW}(\omega)$.

Расчет проведем для условий, соответствующих эксперименту, описанному в работе [5]. В этом эксперименте основной лазерный импульс с интенсивностью $2.5\times10^{19}~{\rm Bt/cm^2}$ и длительностью около 700 фс воздействовал на плазму с околокритической концентрацией электронов $n_{e,0} = 0.65 n_c$ (где $n_c = m\omega_0^2/(4\pi e^2)$ — критическая концентрация, определяемая как концентрация электронов, при которой лазерная частота ω_0 сравнивается с плазменной частотой $\omega_p = \sqrt{4\pi n_{e,0}e^2/m}; m$ и e масса и заряд электронов, соответственно; в литературе чаще употребляется термин "плазма околокритической плотности" вместо "плазма с околокритической концентрацией электронов"). Сама плазма создавалась в мишени из тринитроцелюлозы с помощью сверхзвуковой волны ионизации, генерируемой дополнительным наносекундным предимпульсом, воздействующим на мишень с характерной задержкой около 2-3 нс относительно последующего основного лазерного импульса [7]. Под действием основного лазерного импульса в плазме околокритической плотности создавался ионный канал длиной около 300 мкм, в котором по механизму прямого лазерного ускорения ускорялись электроны, захватываемые из плазмы.

Будем считать что электроны двигаются со скоростью, близкой к скорости света, вдоль оси 0z и совершают поперечные бетатронные колебания $x(\tau) = r_{\beta} \cos \left[\int_{0}^{\tau} \Omega_{\beta}(\tau') d\tau' \right]$ вдоль оси 0x с частотой Ω_{β} и амплитудой r_{β} . Будем также считать, что в силу изменения гамма-фактора γ_e и частоты бетатронных колебаний Ω_{β} излучение одного и того же электрона некогерентно на разных периодах колебаний, также как и излучение разных электронов, а кроме того, считаем, что относительное изменение Ω_{β} и γ_e мало на периоде $T_{\beta} = 2\pi/\Omega_{\beta}$. В этом случае, используя полученное в [8] выражение для энергии, излученной в телесный угол $d\Theta$ в интервал энергий квантов $\hbar d\omega$ за время T в направлении 0z, получаем следующее выражение для $N_{0.1\%BW}$:

$$N_{0.1\%BW}(\omega, t) = 3 \, 10^{-3} \alpha_f (1 - \cos \theta_{\rm ef}) \frac{N_e}{2\pi^3} \omega_{\rm ef}$$
$$\times \int_0^t dt' \int_0^\infty f_E(E, t') dE$$
$$\times \int_0^{r_{\rm max}} dr_\beta r_\beta f_e(r_\beta, t') \left(\frac{\omega}{\omega_c}\right)^2 K_{2/3}^2 \left(\frac{\omega}{\omega_c}\right), \quad (1)$$

где

$$\omega_c = \frac{3}{2}\omega_{\rm ef}a_{eta}, \quad \omega_{\rm ef} = 2\gamma_e^2\Omega_{eta}, \quad a_{eta} = \frac{\gamma_e\Omega_{eta}r_{eta}}{c}$$

 $\alpha_f = e^2/(\hbar c); \ \theta_{\rm ef}$ — эффективный угол излучения, который в ниже приведенных расчетах был равным $\pi/4$; при выводе (1) предполагалось, что параметр Виглера $a_\beta \gg 1$; эффективное число электронов $N_{\rm e}$ рассчитывалось как

$$N_{\rm e} \approx \pi r_{\sigma}^2 c t_{\rm ef} n_{e,0} \mu_{\rm acc},\tag{2}$$

где $n_{e,0}$ — среднее значение первоначальной концентрации электронов в плазме, $\mu_{\rm acc}$ — эффективная доля ускоренных электронов в ионнном канале, $t_{\rm ef}$ — эффективное время ускорения электронов, которое для обсуждаемых параметров было равно $t_{\rm ef}=100T_0,$ где T_0 — лазерный период; r_{σ} — характерная амплитуда бетатронных колебаний, при этом распределение электронов по амплитудам их бетатронных колебаний описывалось как

$$f_e(r_\beta) = [\pi r_\sigma^2]^{-1} \exp\left[-(r_\beta/r_\sigma)^2\right],$$

$$r_\sigma(t) = r_{\sigma,0}(T_0/T_2(t))^{1/4};$$
(3)

распределение электронов по энергиям описывалось как

$$f_E(E,t) = dst \frac{\exp(-E/T_1) + \varkappa \exp(-E/T_2)}{T_1 + \varkappa T_2}, \quad (4)$$

$$T_i(t) = T_0 + (T_{i,\max} - T_0)(t/t_{\rm ef})^{0.3}, \quad i = 1, 2,$$
 (5)

где T_0 — температура электронов в начале ускорения, T_1 и T_2 — эффективные температуры "тепловых" и "над тепловых") электронов, соответственно, \varkappa — доля надтепловых электронов. Частота бетатронных колебаний описывалась как

$$\Omega_{\beta} = C_{\Omega_{\beta}} \Omega_{\beta, \max}, \quad \Omega_{\beta, \max} = \omega_p / \sqrt{2\gamma_e}, \tag{6}$$

где $\Omega_{\beta,\max}$ — частота бетатронных колебаний в полно-

стью свободном от электронов канале [9] в относительно разреженной плазме, концентрация электронов в котором много меньше критической.

На рисунке 1 показаны расчитанные для условий вышеуказанного эксперимента [5] по вышеприведенным формулам (1)–(6) зависимости $N_{0.1\%BW}(\omega)$ при различных расчетных параметрах, показанных на легенде и указанных в таблице 1. Точечными маркерами показаны данные численных PIC расчетов работы [6]. Расчетные параметры, соответствующие варианту 1 таблицы 1, отвечают наилучшему согласию со спектром, полученном при численном моделировании методом частиц в ячейках (PIC методом).

Из рисунка 1 следует, что особенности спектра синхротронного излучения, наблюдаемые в PIC-расчетах, можно описать при помощи вышеописанной простой модели (1) с распределением (3) электронов по амплитудам их бетатронных колебаний и двухтемпературным энергетическим распределеним вида (4). При этом низкоэнергетичная часть функции распределения электронов по энергиям (4) с температурой T_1 в наибольшей степени влияет на часть спектра излучения левее энергии квантов $\hbar \omega_c$, а высокоэнергетичная часть функции распределения электронов по энергиям (4) с температурой T_2 наиболее значительно влияет на часть спектра с $\hbar \omega > \hbar \omega_c$.

3. ВЫВОДЫ

Несмотря на сложность процессов, происходящих при воздействии на плазму околокритической плотности мощного лазерного излучения с длительностью, превышающей период плазменной волны и с мощностью, превышающей критическую для релятивистской самофокусировки, приведенный анализ показывает, что рассмотренная модель с несколькими параметрами позволяет достаточно аккуратно описать спектр излучения ускоренных в образующемся ионном канале электронов. Это указывает на возможность проводить оценки по спектру излучения таких электронов их энергетических и пространственных характеристик.

СПИСОК ЛИТЕРАТУРЫ

- 1. Pukhov A, Sheng Z M and Meyer-ter Vehn J 1999 Physics of Plasmas **6** 2847–2854 (Preprint https://doi.org/10.1063/1.873242)
- Arefiev A V, Khudik V N, Robinson A P L, Shvets G, Willingale L and Schollmeier M 2016 Physics of Plasmas 23 056704 (Preprint https://doi.org/10.1063/1.4946024)
- Rosmej O N, Gyrdymov M, Günther M M, Andreev N E, Tavana P, Neumayer P, Zähter S, Zahn N, Popov V S, Borisenko N G, Kantsyrev A, Skobliakov A, Panyushkin V, Bogdanov A, Consoli F, Shen X F and Pukhov A 2020 Plasma Physics and Controlled Fusion 62 115024
- Pugachev L, Andreev N, Levashov P and Rosmej O 2016 Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 829 88 - 93
- Rosmej O N, Shen X F, Pukhov A, Antonelli L, Barbato F, Gyrdymov M, Günther M M, Zähter S, Popov V S, Borisenko N G and Andreev N E 2021 Matter and Radiation at Extremes 6 048401
- Shen X F, Pukhov A, Günther M M and Rosmej O N 2021 Applied Physics Letters 118 134102

Рисунок 1. Спектр синхротронного излучения: число квантов, испущенных в частотном интервале 0.1% от частоты ω , в зависимости от ω . Точками обозначен численный расчет методом частиц в ячейке работы [6]. На других кривых показаны расчеты по аналитической модели, представленной в данной работе, для параметров, указанных в таблице 1 для соответствующих моделей 1–17, см. легенду. Остальные параметры указаны в тексте. Параметры, которые варьируются в соответствующих подрисунках, указаны над легендой.

- Rosmej O N, Andreev N E, Zaehter S, Zahn N, Christ P, Borm B, Radon T, Sokolov A, Pugachev L P, Khaghani D, Horst F, Borisenko N G, Sklizkov G and Pimenov V G 2019 New Journal of Physics 21 043044
- 8. Esarey E, Shadwick B A, Catravas P and Leemans W P 2002 Phys. Rev. E ${\bf 65}$ 056505
- Khudik V, Arefiev A, Zhang X and Shvets G 2016 Physics of Plasmas 23

№модели	T_0 , eV	$T_{1,\max}, eV$	$T_{2,\max}, eV$	н	$\mu_{\rm acc}$	$C_{\Omega_{\beta}}$	$r_{\sigma,0}, \mu \mathrm{m}$	$r_{\rm max}, \mu {\rm m}$
1	0.2	2	8	0.2	0.1	$0.7^{\scriptscriptstyle P}$	3	6
2	0.4	2	8	0.2	0.1	0.7	3	6
3	0.1	2	8	0.2	0.1	0.7	3	6
4	0.2	3	8	0.2	0.1	0.7	3	6
5	0.2	1	8	0.2	0.1	0.7	3	6
6	0.2	2	10	0.2	0.1	0.7	3	6
7	0.2	2	6	0.2	0.1	0.7	3	6
8	0.2	2	8	0.4	0.1	0.7	3	6
9	0.2	2	8	0.1	0.1	0.7	3	6
10	0.2	2	8	0.2	0.15	0.7	3	6
11	0.2	2	8	0.2	0.07	0.7	3	6
12	0.2	2	8	0.2	0.1	0.8	3	6
13	0.2	2	8	0.2	0.1	0.6	3	6
14	0.2	2	8	0.2	0.1	0.7	4	6
15	0.2	2	8	0.2	0.1	0.7	2	6
16	0.2	2	8	0.2	0.1	0.7	3	7
17	0.2	2	8	0.2	0.1	0.7	3	5

Таблица 1. параметры расчетов для разных моделей 1 – 17 (1-й столбец). Прямоугольными рамками выделены параметры, отличающиеся от соответствующих пармаетров модели №1 (1-я строка таблицы)