Масс-спектрометрический анализ лазерно-индуцированного испарения карбида тантала до 4900 К

А. М. Фролов, С. В. Петухов, Т. М. Фаляхов и М. А. Шейндлин

Объединенный институт высоких температур РАН, Ижорская ул., 13, стр.2, Москва

125412, Россия

E-mail: matotz@gmail.com

Статья поступила в редакцию 22 ноября 2018 г.

Аннотация. Процесс испарения карбида тантала — сверхтугоплавкого вещества с температурой плавления 4277 К — недостаточно изучен. Существующие данные получены стационарными методами для температуры порядка 3000 К, а данные об испарении жидкой фазы отсутствуют. В работе представлены результаты исследования испарения карбида тантала с помощью времяпролетной масс-спектрометрии при нагреве вещества лазерными импульсами миллисекундной длительности. Впервые были измерены температурные зависимости относительных парциальных давлений различных молекулярных компонентов в паре и соотношение атомов углерода и тантала над поверхностью жидкого карбида тантала. https://doi.org/10.33849/2018110

Карбид тантала является сверхтугоплавкой керамикой с наивысшей температурой плавления. Последнее, а также ряд других его свойств, определило возрастающий интерес к этому веществу для ряда применений при экстремально высоких температурах. Из-за весьма высокой температуры его плавления — свыше 4000 К [1] — удалось получить только отрывочные данные по теплофизическим свойствам карбида тантала в окрестности точки плавления [2]. В частности, отсутствуют данные по сублимации и испарению, которые позволяют судить о скорости и характере уноса вещества с поверхности при эксплуатации в экстремальных условиях. Даже при температурах значительно ниже точки плавления представлено мало результатов по испарению карбида тантала из-за очень низкого давления его паров. Карбид тантала с составом, близким к стехиометрическому, исследовался только в экспериментах с Ленгмюровским испарением [3, 4].

Стормс [5], анализируя данные о скорости испарения из работ [3, 4], пришел к выводу, что приведенное значение энтальпии сублимации углерода для карбида тантала — 622 кДж/моль — сильно занижено и на самом деле должно быть выше, чем значение энтальпии сублимации для графита (718 кДж/моль по данным из [3]). Стоит также отметить, что в работе [3] использовались образцы ТаС_{1+x}, то есть, по сути, исследовалось испарение механической смеси углерода и карбида. В работе [6] проведен качественный анализ испарения ряда карбидов, в том числе карбида тантала с помощью нагрева короткими (25 нс) и длинными (800 мкс) лазерными импульсами. Авторы сообщают о наличии молекул С₁-С₃ в парах карбида тантала, причем доля атомарного углерода в парах наибольшая. Однако, эти данные сложно интерпретировать, так как в работе не проводилось измерение температуры, к которой можно было бы отнести полученные результаты.

В настоящей работе с помощью времяпролетной масс-спектрометрии проводился анализ состава паров карбида тантала, нагреваемого лазерными импульсами миллисекундной длительности. Постановка эксперимента, в целом, близка к представленной в работе [7]. Особенностью данного метода является то, что удается реализовать режим испарения, близкий к свободномолекулярному, и получить в каждом отдельном эксперименте температурные зависимости парциальных давлений для отдельных компонентов паров. Следует отметить, что относительные давления компонентов паров углерода, полученные этим методом, показали хорошее соответствие с результатами термодинамических расчетов из [8]. С другой стороны, такой метод позволяет успешно анализировать системы с быстро меняющимся составом, такие как диоксид урана с гиперстехиометрическим составом [9].

1. ОБРАЗЦЫ ДЛЯ ИССЛЕДОВАНИЯ

Образцы карбида тантала приготавливались методом прямого синтеза из порошков углерода и тантала с последующим спеканием при температуре около 2500 К в среде аргона. Часть поверхности образцов была дополнительно переплавлена лазерным импульсом, длительностью около 1 с. В ходе такого лазерного переплава были измерены как температуры плавления, так и излучательная способность карбида тантала в твердом и жидком состояниях [1]. Температура плавления, измеренная в работе [1], составила 4277±30 К, значения излучательной способности поверхности после предварительного переплава как в твердом, так и жидком состояниях совпали в пределах погрешности и составили $\varepsilon = 0.4 \pm 0.02$. В экспериментах по исследованию испарения использовался переплавленный карбид тантала, так как это обеспечивало лучшую воспроизводимость результатов.

2. ЭКСПЕРИМЕНТАЛЬНАЯ УСТАНОВКА

Схема экспериментальной установки, разработанной для проведения экспериментов по лазерноиндуцированному испарению тугоплавких веществ, представлена на рисунке 1. Образец, расположенный в аналитической камере масс-спектрометра, нагревается в нижней камере лазерным импульсом с плотностью мощности до 2×10^5 BT/см². Для нагрева применяется дисковый лазер непрерывного действия мощностью до 5 кВт (длина волны 1030 нм), позволяющий получать импульс произвольно заданной формы с минимальным временем нарастания импульса около 100 мкс. Фокусирующая система обеспечивала пятно нагрева 400 мкм в диаметре, при этом достигалась высокая однородность

Рисунок 1. Схема экспериментальной установки.

плотности мощности в пятне нагрева. Часть испаренного с поверхности вещества, прошедшего через скиммер, попадает в камеру времяпролетного масс-анализатора. После прохождения скиммера нейтральные молекулы пара попадают в ионизатор, где ионизируются под воздействием электронов с энергией около 15 эВ. Эта энергия выбрана так, чтобы получить достаточное количество ионов всех молекулярных компонентов в паре, но, в то же время, чтобы избежать фрагментации молекул или появления двукратно ионизованных частиц. Образованные ионы, под действием короткого импульса высокого напряжения, инжектируются во времяпролетную зону масс-спектрометра, где происходит их разделение в соответствии с соотношением масса/заряд и последующее детектирование с помощью вторичного электронного умножителя (ВЭУ). Частота повторения такого импульса составляет 50 кГц, таким образом, время регистрации одного спектра составляет 20 мкс. Сигнал с детектора, после усиления, оцифровывается 12-битным АЦП с частотой 3 ГГц и записывается в память компьютера, где происходит дальнейшая обработка.

Температура измерялась яркостным пирометром с рабочей длиной волны 905 нм и пятном визирования диаметром около 150 мкм. Калибровка пирометра осуществлялась с помощью модели черного тела в температурном диапазоне 2300–3300 K, затем полученная калибровка экстраполировалась до 5000 К. Относительная ошибка измерения температуры составляла 1.2 %. Запись термограмм и масс-спектров происходила одновременно, что позволяло получить температурные зависимости измеряемых величин. На рисунке 2 приведены характерная форма лазерного импульса и соответствующая ему термограмма. В работе использовался импульс с почти экспоненциальным нарастанием мощности, что обеспечивало зависимость температуры от времени близкую к линейной. В нескольких точках переплавленных поверхностей двух образцов производилось до четырех таких лазерных "выстрелов" в процессе которых анализировалась эволюция масс-спектров.

Рисунок 2. Форма лазерного импульса и термограмма.

Рисунок 3. Характерный масс-спектр паров карбида тантала при T > 4300 К.

3. РЕЗУЛЬТАТЫ

На рисунке 3 представлен характерный масс-спектр паров карбида тантала при температурах свыше 4300 К. В спектре видны линии атомарного углерода и тантала, TaC_2 , а также линии молекул C_2 и C_3 . При максимально достигаемых температурах, возможно, в принципе, и появление ионов, образованных в результате термической ионизации, однако специально проведенные эксперименты с отключенным ионизатором не подтвердили их наличие.

По интенсивностям отдельных линий были рассчитаны относительные парциальные давления р атомарного углерода и тантала, согласно формуле, рекомендованной ИЮПАК (IUPAC) [10]:

$$p \sim I \times T$$
 (1)

где I — интенсивность соответствующей линии в массспектре, Т — температура. На рисунке 4 представлена температурная зависимость относительного парциального давления углерода, полученная в одном эксперименте. Из графика видно, что парциальное давление зависит только от температуры, а не от того, происходит ли нагрев или охлаждение образца. Из углов накло-

Рисунок 4. Относительное парциальное давление C_1 в парах над $TaC_{1\pm0.05}$: \blacktriangle — нагрев, \Box — охлаждение.

на температурных зависимостей парциальных давлений выше точки плавления были рассчитаны значения энтальпий испарения C₁ и Ta для жидкого карбида тантала: $\Delta H(C_1) = 632\pm43$ кДж/моль, $\Delta H(Ta) = 210\pm46$ кДж/моль. При выбранных для измерений настройках масс-спектрометра не удалось получить достаточно данных ниже точки плавления для расчета значения энтальпий сублимации компонентов для твердой фазы.

Из парциальных давлений отдельных компонентов были рассчитаны соотношения атомов углерода и тантала – n(C)/n(Ta), согласно формуле для расчета относительных давлений в высокотемпературной массспектрометрии, представленной ИЮПАК (IUPAC) [10]:

$$\frac{n(C)}{n(Ta)} = \frac{p(C)}{p(Ta)} = \frac{I(C)}{I(Ta)} \cdot \frac{\sigma(Ta)}{\sigma(C)} \cdot \frac{\gamma(Ta)}{\gamma(C)} \cdot \frac{\beta(Ta)}{\beta(C)} \quad (2)$$

где р(С), р(Та) — парциальные давления паров атомов углерода и тантала соответственно; I(Та), I(С) — интенсивности линий в масс-спектре; σ (Та), σ (С) — сечения ионизации для соответствующих частиц; γ (Та), γ (С) соответствующие коэффициенты вторичной эмиссии для детектора частиц; β (Та), β (С) — "коэффициенты прохождения" через масс-спектрометр. Сечения ионизации были рассчитаны согласно модели, предложенной в [10], рассчитанное для 15 эВ соотношение σ (Та)/ σ (С) = 12.98. Коэффициенты вторичной эмиссии для ВЭУ были приняты пропорциональными М^{-0.4}, где М — масса детектируемой частицы [10]. "Коэффициенты прохождения" полагаются равными для разных ионов в случае времяпролетного масс-спектрометра.

Рассчитанные значения относительных давлений C_2 и C_3 в паре пренебрежительно малы по сравнению с давлением C_1 , поэтому в расчетах количества частиц они не учитывались. На рисунке 5 изображена полученная температурная зависимость соотношения n(C)/n(Ta). Приведенные на графике значения — результат усреднения по результатам восьми "выстрелов" по разным точкам поверхностей двух образцов. Так как данные, полученные в первых "выстрелах" по свежей поверхности, плохо воспроизводились, для усреднения брались только результаты вторых и третьих "выстрелов".

Рисунок 5. Соотношение атомов углерода и тантала в парах над ${\rm TaC}_{1\pm 0.05}.$

В диапазоне температур от 3700 K до 4300 K происходит резкое увеличение доли углерода в парах — более чем в 10 раз. В окрестности 4300 K температурной зависимости соотношения n(C)/n(Ta) присутствует особенность, связанная с плавлением при температуре 4277±30 K [1]. При переходе в жидкое состояние соотношение тантала и углерода почти не меняется, однако, начиная с температуры около 4600 K, в паре наблюдается дальнейший рост доли атомов углерода.

4. ЗАКЛЮЧЕНИЕ

В настоящей работе впервые изучено испарение как твердого, так и жидкого карбида тантала. В связи с тем, что параметры эксперимента подбирались прежде всего для исследования испарения выше точки плавления, анализ состава паров удалось провести только с температуры 3700 К. Как оказалось, при температуре свыше 3700 К основным компонентом в паре являются атомы углерода, доля которых монотонно нарастает вплоть до точки плавления. После плавления изменение соотношения n(C)/n(Ta) не наблюдается вплоть до температуры 4600 K, выше которой продолжается увеличение процента углерода в парах.

БЛАГОДАРНОСТИ

Исследование выполнено при финансовой поддержке РФФИ в рамках научного проекта №18-38-00837.

СПИСОК ЛИТЕРАТУРЫ

- Sheindlin M, Falyakhov T, Petukhov S, Valyano G and Vasin A 2018 Adv. Appl. Ceram. 117 s48-s55
- 2. Онуфриев С В, Савватимский А И и Янчук В И 2011 Измерительная техника 49-52
- Hoch M, Blackburn P, Dingledy D and Johnston L 1955 J. Phys. Chem. 59 97-99
- 4. Deadmore D L 1964 Vaporization of tantalum carbidehafnium carbide solid solutions *techreport* TN D-2512 (NASA)
- 5. Storms E 1967 *Refractory Carbides* (New York: Academic press)
- 6. Meyer R T 1973 Pulsed laser induced vaporization of graphite and carbides 11th Biennial Conf. (Gatlinburg, TN)

- Pflieger R, Sheindlin M and Colle J Y 2005 Int. J. of Thermophys. 26 1075–1093
- 8. Gurvich L, Iorish V, Chekhovskoi D and Yungman V 1993 NIST Special Database 5
- 9. Pflieger R, Colle J Y, Iosilevskiy I and Sheindlin M 2011 J. of App. Phys. **109** 033501
- 10. Drowart J, Chatillon C, Hastie J and Bonnell D 2005 Pure Appl. Chem. 77 683-737