# К вопросу о моделировании транспортных и оптических свойств плотной плазмы серебра

М. Е. Поварницын<sup>1,2</sup>, Д. В. Князев<sup>1,2</sup> и П. Р. Левашов<sup>1,2</sup>

<sup>1</sup> Объединенный институт высоких температур РАН, Ижорская ул., 13, стр.2, Москва

125412, Россия

<sup>2</sup> Московский физико-технический институт (государственный университет),

Институтский пер., 9, Долгопрудный 141701, Россия

#### E-mail: povar@ihed.ras.ru

#### Статья поступила в редакцию 28 ноября 2018 г.

Аннотация. Выполнены расчеты транспортных и оптических свойств плотной плазмы серебра с помощью метода квантовой молекулярной динамики и формулы Кубо–Гринвуда и сделана попытка описания этих данных с помощью полуэмпирических формул, полученных на основе подхода Друде. Результаты первопринципных расчетов показывают, что *d*-электроны оказывают существенное влияние на свойства серебра, поэтому зависимость коэффициента теплопроводности от температуры оказывается немонотонной и не может быть описана моделью Друде. В то же время мнимую часть комплексной диэлектрической проницаемости можно с хорошей точностью приблизить формулой Друде в оптическом диапазоне частот. https://doi.org/10.33849/2018109

#### 1. ВВЕДЕНИЕ

За последние десятилетия было проведено значительное число экспериментов по изучению фемтосекундной лазерной абляции благородных металлов, в том числе в ОИВТ РАН [1, 2]. Численное моделирование может дать существенно более полную картину этого явления, когда прямые измерения сложно или невозможно выполнить. Для моделирования, однако, требуются оптические и транспортные свойства материалов [3, 4]. Для решения этой проблемы были разработаны различные подходы [5], в том числе химическая модель плазмы [6], модель среднего атома [7], а также квантовостатистический подход [8]. Разработка широкодиапазонных моделей оптических и транспортных свойств, покрывающих несколько порядков величины по плотности и температуре, является чрезвычайно сложной проблемой. Для фемтосекундных лазерных импульсов эта задача немного упрощается благодаря тому факту, что процесс нагрева вещества можно рассматривать как изохорический. Поэтому свойства вещества, в частности, серебра, при плотностях, близких к нормальной, и температурах от комнатной до нескольких электронвольт, представляют большой интерес.

На сегодняшний день, благодаря широкому распространению мощных суперкомпьютеров, получили развитие различные подходы для вычисления теплофизических и оптических свойств, основанные на методе квантовой молекулярной динамики (КМД) и формуле Кубо–Гринвуда (КГ). Эти подходы использовались для вычисления ударных адиабат [9, 10], фононного спектра [11] и уравнения состояния [12], а также транспортных и оптических свойств [13]. В данной работе получены новые данные по транспортным и оптическим свойствам плазмы серебра с плотностью 10.5 г/см<sup>3</sup> и в диапазоне температур от 3 до 20 кК с помощью КМД и формулы КГ. Результаты сравниваются с полуэмпирической моделью, основанной на формуле Друде.

## 2. ЧИСЛЕННЫЙ МЕТОД

#### 2.1. КМД и формула КГ

Численный метод расчета состоит из трех основных стадий [14, 15]: 1) КМД-моделирование, 2) точный рас-

чет зонной структуры и 3) вычисление транспортных и оптических свойств по формуле КГ.

На первой стадии атомы помещаются в суперячейку с периодическими граничными условиями. Размер суперячейки определяется плотностью серебра 10.5 г/см<sup>3</sup> для заданного числа атомов. На каждом КМД-шаге решаются конечно-температурные уравнения Кона-Шэма в рамках метода функционала плотности и вычисляется зонная структура и распределение электронной плотности с помощью метода функционала плотности. Температура электронов T<sub>e</sub> задается как параметр в распределении Ферми–Дирака [13]. Электронная структура рассчитывается в рамках приближения Борна-Оппенгеймера, в котором электроны мгновенно подстраиваются под текущее пространственное положение ионов. Для вычисления сил, действующих на ион со стороны остальных ионов и электронов, используется теорема Гельмана-Фейнмана. Для поддержания заданной температуры ионов T<sub>i</sub> используется термостат Нозе-Гувера, при этом возникают дополнительные силы, действующие на ионы. Результирующие силы далее используются для решения классических уравнений Ньютона с заданным шагом по времени и, таким образом, вычисляются ионные траектории в NVT-ансамбле. В данной работе рассмотрен однотемпературный случай  $T_i = T_e = T;$  вычисления в двухтемпературном случае  $T_e \neq T_i$  также возможны [16, 17].

На первой стадии рассчитываются ионные траектории, временные зависимости полной энергии электронов и ионов и полное давление электронов и ионов. Термодинамические, транспортные и оптические свойства вычисляются на равновесном участке КМДмоделирования.

На второй стадии выбираются некоторые ионные конфигурации с равновесного участка КМДмоделирования. Для каждой такой конфигурации решаются конечно-температурные уравнения Кона-Шэма. На первой стадии выполняется похожий расчет, однако используются меньшие значения энергии плоских волн, числа **k**-точек в зоне Бриллюэна и числа электронных зон. На второй стадии определяются собственные значения энергии для уравнения Кона-Шэма,  $\epsilon_{i,\mathbf{k}}$ , соответствующие волновые функции  $|\Psi_{i,\mathbf{k}}\rangle$  и Ферми-веса  $f(\epsilon_{i,\mathbf{k}})$ . Здесь i — номер электронной зоны, а  $\mathbf{k}$  — координата точки в зоне Бриллюэна. На первой и второй стадиях используется программный пакет VASP [18–20].

На третьей стадии рассчитываются транспортные и оптические свойства. Действительная часть динамической электропроводности  $\sigma_1(\omega)$  вычисляется в соответствии с формулой КГ [21]:

$$\sigma_{1}(\omega) = \frac{2\pi e^{2}\hbar^{2}}{3m_{e}^{2}\omega\Omega} \sum_{i,j,\alpha,\mathbf{k}} W(\mathbf{k}) \left| \left\langle \Psi_{i,\mathbf{k}} \left| \nabla_{\alpha} \right| \Psi_{j,\mathbf{k}} \right\rangle \right|^{2} \times \left[ f(\epsilon_{i,\mathbf{k}}) - f(\epsilon_{j,\mathbf{k}}) \right] \delta(\epsilon_{j,\mathbf{k}} - \epsilon_{i,\mathbf{k}} - \hbar\omega). \quad (1)$$

Здесь  $\langle \Psi_{i,\mathbf{k}} | \nabla_{\alpha} | \Psi_{j,\mathbf{k}} \rangle$  — матричные элементы оператора градиента,  $\alpha$  обозначает три пространственные направления,  $W(\mathbf{k})$  — вес точки  $\mathbf{k}$  в зоне Бриллюэна,  $\Omega$  — объем суперячейки, e — заряд электрона (e > 0),  $m_e$  — масса электрона,  $\hbar$  — приведенная постоянная Планка.

Вычисление по формуле (1) выполняется для каждой выбранной электронной конфигурации. Полученные значения  $\sigma_1$  затем усредняются для каждого значения  $\omega$ . Мнимую часть динамической электропроводности  $\sigma_2(\omega)$  можно восстановить с помощью преобразования Крамерса–Кронига.

Для нахождения коэффициента теплопроводности вычисляются динамические коэффициенты Онзагера  $L_{mn}(\omega)$  в соответствии с формулой КГ:

$$L_{mn}(\omega) = (-1)^{m+n} \frac{1}{e^{m-1}(eT_e)^{n-1}} \frac{2\pi e^2 \hbar^2}{3m_e^2 \omega \Omega}$$
  
 
$$\times \sum_{i,j,\alpha,\mathbf{k}} W(\mathbf{k}) \left(\frac{\epsilon_{i,\mathbf{k}} + \epsilon_{j,\mathbf{k}}}{2} - \mu_e\right)^{m+n-2} |\langle \Psi_{i,\mathbf{k}} | \nabla_{\alpha} | \Psi_{j,\mathbf{k}} \rangle|^2$$
  
 
$$\times [f(\epsilon_{i,\mathbf{k}}) - f(\epsilon_{j,\mathbf{k}})] \,\delta(\epsilon_{j,\mathbf{k}} - \epsilon_{i,\mathbf{k}} - \hbar\omega). \quad (2)$$

Значения  $L_{mn}(\omega)$ , полученные для различных ионных конфигураций, усредняются для каждых m и n. Коэффициент теплопроводности  $\kappa$  затем вычисляется по формуле:

$$\kappa = L_{22} - \frac{L_{12}L_{21}}{L_{11}}.\tag{3}$$

# 2.2. Полуэмпирическая аппроксимация, основанная на модели Друде

В металлах, в соответствии с подходом Друде [22], взаимодействие электронов проводимости считается пренебрежимо малым, поэтому можно оценить оптические и транспортные свойства при температурах ниже температуры Ферми. Мнимая часть диэлектрической проницаемости в этом приближении определяется внутризонными электронными переходами:

$$\varepsilon_2 = \frac{\sigma_1(\omega)}{\varepsilon_0 \omega} = \frac{\omega_{\rm pl}^2 \nu}{\omega^3 + \omega \nu^2},\tag{4}$$

где  $\omega_{\rm pl}$  — плазменная частота,  $\varepsilon_0$  — диэлектрическая постоянная, а  $\nu$  — частота столкновений, которая при температурах заметно меньше температуры Ферми линейно зависит от температуры решетки и учитывается



Рисунок 1. Мнимая часть диэлектрической проницаемости  $\varepsilon_2(\omega)$  при различных температурах. Сплошные линии — модель Друде, пунктирные линии — расчеты по формуле КГ.



Рисунок 2. Коэффициент теплопроводности как функция температуры. Красная кривая — аппроксимация (6); зеленые квадраты — формула КГ. Синий кружок соответствует экспериментальным данным при комнатной температуре.

в виде вклада электрон-фононных столкновений:

$$\nu = Ak_B T/\hbar. \tag{5}$$

Сходным образом, электронная теплопроводность металла вычисляется в соответствии с формализмом Друде следующим образом:

$$\kappa = \frac{\pi^2 k_B^2 n_e}{3m_e \nu} T,\tag{6}$$

где  $n_e$  — плотность электронов, определяемая числом электронов в зоне проводимости Z = 2. Безразмерный параметр A подбирается из условия наилучшего соответствия результатам расчетов по формуле КГ. Эти параметры различны для коэффициента теплопроводности и диэлектрической проницаемости.

### 3. РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Расчеты выполнены для плазмы серебра при нормальной плотности 10.5 г/см<sup>3</sup> и температурах от 3 до 20 кК. Мнимая часть диэлектрической проницаемости  $\varepsilon_2(\omega) = \sigma_1(\omega)/(\varepsilon_0\omega)$ , вычисленная по формуле КГ, показана на рисунке 1. Приведена также аппроксимация по формуле (4) с коэффициентами для частоты столкновений (5) A = 0.8. Видно, что аппроксимационная формула хорошо воспроизводит первопринципные расчеты. Действительную часть диэлектрической проницаемости можно восстановить с помощью данных первопринципных расчетов для мнимой части и преобразования Крамерса–Кронига, однако это потребует большого объема вычислений.

На рисунке 2 приведены данные для коэффициента теплопроводности. Расчетные точки, полученные с помощью формулы КГ, демонстрируют немонотонное поведение:  $\kappa$  убывает при T < 7 кК и растет при T > 7 кК. Это отличается от модели Друде, в которой наблюдается постоянный коэффициент теплопроводности, не зависящий от температуры. Параметр в формуле для частоты столкновений (5) A = 1.4 подобран таким образом, чтобы воспроизводилось экспериментальное значение  $\kappa$ при комнатной температуре.

Особенности поведения транспортных свойств в зависимости от температуры коррелируют с электронной плотностью состояний. Статические коэффициенты Онзагера  $L_{mn}$  связаны с переходами между состояниями с близкими собственными значениями энергии. Переход из занятого состояния в другое занятое невозможен, как и переход из незанятого состояния в незанятое. Следовательно, только частично занятые состояния с энергиями, близкими к значению химического потенциала, дают вклад в L<sub>mn</sub>. КМД-моделирование показывает, что d-электроны серебра начинают давать вклад в  $L_{mn}$  при  $T \approx 7-10$  кК. Это коррелирует с изменением характера зависимости коэффициента теплопроводности от температуры, см. рисунок 2. Следует отметить, что для меди (которая является *d*-металлом, как и серебро) ранее было получен монотонный рост коэффициента теплопроводности при температурах 2-60 кК [23].

#### 4. ВЫВОДЫ

В работе были рассчитаны транспортные и оптические свойства серебра на нормальной изохоре в диапазоне температур от 3 до 20 кК. Результаты получены с помощью КМД-моделирования и формулы КГ. Мнимая часть диэлектрической проницаемости в оптическом диапазоне частот может быть описана моделью Друде. Температурная зависимость коэффициента теплопроводности оказалась немонотонной и имеет минимум при  $T \approx 7$  кК, что не воспроизводится моделью Друде. Транспортные и оптические свойства серебра отличаются от исследованных ранее металлов, в том числе алюминия в диапазоне температур  $3 \le T \le 20$  кК [24] и меди в диапазоне температур  $2 \le T \le 60$  кК [23]. Анализ плотности состояний показывает, что подобное поведение определяется влиянием возбуждения *d*-электронов.

#### СПИСОК ЛИТЕРАТУРЫ

- Veysman M E, Agranat M B, Andreev N E, Ashitkov S I, Fortov V E, Khishchenko K V, Kostenko O F, Levashov P R, Ovchinnikov A V and Sitnikov D S 2008 J. Phys. B: At. Mol. Opt. Phys. 41 125704
- Ашитков С И, Комаров П С, Струлёва Е В, Юркевич А А и Агранат М Б 2016 Теплофизика высоких температур 54 957–959
- Povarnitsyn M E, Andreev N E, Apfelbaum E M, Itina T E, Khishchenko K V, Kostenko O F, Levashov P R and Veysman M E 2012 Appl. Surf. Sci. 258 9480–9483
- 4. Povarnitsyn M E, Fokin V B, Levashov P R and Itina T E 2015 Phys. Rev. B **92** 174104
- 5. Volkov N B, Chingina E A and Yalovets A P 2016 J. Phys.: Conf. Ser. 774 012147
- 6. Apfelbaum E M 2017 Phys. Plasmas 24 052702
- Ovechkin A A, Loboda P A and Falkov A L 2016 High Energy Density Phys. 20 38-54
- 8. Veysman M, Röpke G, Winkel M and Reinholz H 2016 *Phys. Rev. E* **94** 013203
- Wang C, Wang Z-B, Chen Q-F and Zhang P 2014 Phys. Rev. E 89 023101
- Minakov D V, Levashov P R, Khishchenko K V and Fortov V E 2014 J. Appl. Phys. 115 223512
- 11. Minakov D V and Levashov P R 2015 *Phys. Rev. B* **92** 224102
- 12. Wang C and Zhang P 2013 Phys. Plasmas 20 092703
- Knyazev D V and Levashov P R 2013 Comput. Mater. Sci. 79 817–829
- Levashov P, Sin'ko G, Smirnov N, Minakov D, Shemyakin O and Khishchenko K 2010 J. Phys.: Condens. Matter 22 505501
- 15. Sin'ko G, Smirnov N, Ovechkin A, Levashov P and Khishchenko K 2013 *High Energy Density Phys.* **9** 309–314
- Knyazev D V and Levashov P R 2014 Phys. Plasmas 21 073302
- 17. Knyazev D V and Levashov P R 2016 Phys. Plasmas 23 102708
- 18. Kresse G and Hafner J 1993 Phys. Rev. B 47 558-561
- 19. Kresse G and Hafner J 1994 Phys. Rev. B  ${\bf 49}$  14251–14269
- Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169– 11186
- 21. Moseley L L and Lukes T 1978 Am. J. Phys. 46 676–677
- Rethfeld B, Ivanov D S, Garcia M E and Anisimov S I 2017 J. Phys. D: Appl. Phys. 50 193001
- 23. Petrov Yu V, Migdal K P, Knyazev D V, Inogamov N A and Levashov P R 2016 J. Phys.: Conf. Ser. 774 012103
- 24. Povarnitsyn M E, Knyazev D V and Levashov P R 2012 Contrib. Plasma Phys. 52 145-148